Inquiry Email Whatsapp
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers
CEEG S(B)H15-M Amorphous Metal Core Oil-immersed Transformers

CEEG S(B)H15-M Trasformatori immersi in olio con nucleo in metallo amorfo

Brand: CEEG
High Voltage: 6kV-10.5kV
Low Voltage: 0,4 kV
Rated Capacity: 100kVA-2500kVA
Vector Group: Dyn11
Phase: Trifase
Connection Section: Dyn11
Service: Servizio personalizzato
Nature of Business: Produttore
Richiedi un preventivo

Parameters Table-mrqt.pngS(B)H15-M Amorphous Metal Oil-immersed transformer.jpg

S(B)H15-M Amorphous Metal Core Oil-immersed transformer

Capacity
(KVA)

Voltage Ratio

Vector Group

LWA

No Load Loss
(W)

Load Loss At
75℃ (W)

No Load Current (%)

Impedance 75℃ (%)

High Voltage
(KV)

HV Tapping
%

Low Voltage
(KV)

100

6.0

6.3

10

10.5

±2*2.5%
or
+3/-1*2.5%

0.4

Dyn11

52

75

1500

1

4

125

54

85

1800

0.9

160

100

2200

0.7

200

56

120

2600

0.7

250

140

3050

0.7

315

58

170

3650

0.7

400

200

4300

0.5

500

60

240

5150

0.5

630

320

6200

0.3

4.5

800

62

380

7500

0.3

1000

450

10300

0.3

1250

65

530

12000

0.2

1600

630

14500

0.2

2000

67

750

17400

0.2

5

2500

900

20200

0.2

project cases.pngceeg projects-qirz.jpg

performance features-khpu.pngWith the development of amorphous metal in the 1970s, it became widely used in 1990 as a high-energy-saving material for the transformer industry. Currently, over 1 million tonnes of amorphous metal-type transformers have been connected to the grid worldwide. The longest proven safe and most reliable transformer has been running for more than 30 years, and it still performs satisfactorily in the power industry.

The energy saving is huge and it shall be the new era products in the power industry.

Amorphous Metal Replacing Silicone Steel

Amorphous metal is a metallic material with a disordered atomic-scale structure.

Amorphous metal is non-crystalline, the alloys of boron, silicon, phosphorus, and other glassformers with magnetic metals (iron, cobalt, nickel) are magnetic, with low coercivity and high electrical resistance. The high resistance leads to low losses by eddy currents when subjected to alternating magnetic fields, a property useful e.g. transformer magnetic cores.

Feature of Amorphous Core: Three phases three columns, self-invention by CEEG, which received many patents, low iron loss, temperature rise and noise level, transformer dimension small.

1) All raw materials are supplied by Hitachi Metals with iron loss of less than 70-80% of the standard silicon steel.

2) The company has special treatment, procedure, and manufacturer processes, which have patent numbers: 200810238258.6,20082015857.5,200820215858.X, 200820215812.8, 200820215814.7.

3) The core structure is clean and strong, which is not influenced by the movement created during transportation.

4) The three-column structure can withstand high-level harmonics. At Y-connection, the transformer can resist the 3rd harmonic in the network.

production ability.pngCEEG production ability 21-cidu.jpg1. Reliability of Insulation Technology

Our research spans from initial two-dimensional electric field simulations, three-dimensional electric field measurements, and impact characteristic measurements to later-stage theoretical analysis and simulated experiments on the main insulation, longitudinal insulation, end insulation, insulation of leads, and coil withstand voltage characteristics of transformers. Through years of verification using various methods, we ensure the reliability of transformer insulation.

2. Calculation of leakage magnetic field and reduction of stray loss

Dedicate specialized efforts to calculating and measuring transformer leakage magnetic fields. The research includes shielding structures for leakage magnetic fields, calculations for transformer dynamics and thermal stability, and improvements in transformer dynamic and thermal stability to guarantee accurate calculations and reduced stray losses, thereby enhancing transformer dynamic stability.

3. Precise Analysis of Coil Temperature Fields

Collaborating with numerous domestic universities, we jointly developed programs for calculating coil temperature fields. These programs calculate loss distribution in coils, including resistive losses, eddy current losses in different directions, and circulating losses between parallel conductors, as well as flow field cooling conditions. This enables the accurate calculation of coil temperature distribution and hotspot temperature rises, allowing us to take measures to effectively control hotspot temperature rises that impact transformer lifespan.

4. Reducing Local Discharge in Transformers

Electric field strengths at various locations have undergone numerical analysis during the design phase and have been strictly controlled. Additionally, compliance with manufacturing quality, the reliability of processing methods, and the reasonableness of operating techniques effectively control local discharges in transformers.

CEEG is a professional transformer manufacturer!

Ottieni un preventivo

CEEG offrirà preventivi personalizzati e potenti soluzioni per soddisfare le tue esigenze. Inviaci i tuoi dati e ti richiameremo il prima possibile.

Utilizziamo i cookie per garantirvi la migliore esperienza sul nostro sito web. Se continui a utilizzare questo sito, supponiamo che tu accetti tale utilizzo.